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Abstract
The application of the exact renormalization group to a many-fermion system
with a short-range attractive force is studied. We assume a simple ansatz
for the effective action with effective bosons, describing pairing effects and
derive a set of approximate flow equations for the effective coupling including
boson and fermionic fluctuations. The phase transition to a phase with broken
symmetry is found at a critical value of the running scale. The mean-field
results are recovered if boson-loop effects are omitted. The calculations with
two different forms of the regulator were shown to lead to similar results.

PACS numbers: 05.10.Cc, 03.75.Kk, 71.10.−w

(Some figures in this article are in colour only in the electronic version)

There is a growing interest in applying the exact renormalization group (ERG) formalism
to few- and many-body systems [1–4] when the underlying interaction is essentially non-
perturbative. Regardless of the details all ERG-based approaches share the same distinctive
feature, a successive elimination/suppression of some modes, resulting in effective interaction
between the remaining degrees of freedom [5]. One specific way of implementing such a
procedure is to eliminate modes by applying a momentum-space blocking transformation with
some physically motivated cutoff. The effect of varying a cutoff is described by nonlinear
ERG evolution equations, which include the effect of the eliminated modes. By solving
the ERG equations, one can find a scale dependence of the coupling constants and thus
determine a path in the space of Lagrangian functionals. The ERG formalism is closely linked
to another approach which has become increasingly popular in both few- and many-body
physics, effective field theory (EFT). EFT is also based on a separation of scales, removal of
some (mainly high-energy) degrees of freedom and use of the effective degrees of freedom
instead of the fundamental ones.

In a sense, EFT and ERG compliment each other. EFT can provide the guidance for fixing
the initial conditions and ERG can be used as an analytic method to study the evolution of the
system as a function of some generic scale parameter. This is especially useful in the case of
truly non-perturbative problems, where there are no small parameters one can expand in. This
situation is quite common both in few- and many-body problems. One notes that, although
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we will focus on the systems consisting of nucleons, many aspects of the following discussion
are relevant for the other types of fermionic systems, especially fermionic atoms in traps.

Probably the most important dynamical feature of the nucleon–nucleon interaction is
the unnaturally large scattering length that makes a perturbative expansion meaningless both
for free nucleons and for nuclear matter. In addition, the presence of the Fermi momentum
signals the appearance of another scale which further complicates the use of any perturbative
technique. One notes that the use of the perturbation theory for the two-nucleon system in
vacuum can be justified only for the hypothetical case of weakly interacting nucleons with
a small scattering length. In medium, however, even a weak attraction between nucleons
may lead to the intrinsically non-perturbative phenomenon, the superfluidity, characterized by
rearrangement of the ground state and appearance of the gap in the spectrum. The fermions
form correlated pairs which, depending on the strength of the interaction, may lead to different
physical regimes. The weak coupling regime (BCS phase) corresponds to a pair with the spatial
size much larger than the radius of the interaction so that no actual bound two-body subsystem
is formed, while in the strong regime corresponding to the Bose–Einstein condensation (BEC)
the fermion pairs form compact deeply bound two-body states.

It would be appealing to describe all these regimes by starting at a large initial scale with
some EFT motivated effective action and then run the scale down to the physical point where
the scale parameter vanishes. Thus, the results will depend on one physical parameter, the
scattering length of the nucleon–nucleon interaction in free space.

The ideal tool to treat this problem is provided by a variant of the ERG approach, based
on the average effective action (AEA) [6]. The AEA is the generating functional of the
one-particle irreducible (1PI) correlation function in the presence of an infrared cutoff scale
k. Only fluctuations with momenta larger than k are taken into account. For k → 0, all
fluctuations are included and we arrive at standard effective action from which all physical
correlation functions can be extracted. The evolution equation for the AEA has the following
one-loop form:

∂k� = − i

2
Tr[(∂kR)(�(2) − R)−1]. (1)

Here �(2) is the second functional derivative of the AEA taken with respect to all types of
field included in the action and R is a regulator which should suppress the contributions of
states with momenta less than or of the order of running scale k. To recover the full effective
action we require R(k) to vanish as k → 0, in other respects its form is rather arbitrary.
The concrete functional form of the regulator has no effect on physical results provided no
approximations/truncations were made. In practice, however, approximations/truncations are
always required to render the system of the evolution equations finite and solvable. Therefore,
some dependence on the functional form of regulator is inevitable. The simplest way to
estimate this dependence is to solve the system of evolution equations using several choices
of regulators. Of course, it does not guarantee the fully quantitative estimate of the errors
introduced but may at least give an idea about the size of the corresponding uncertainty.

1. Ansatz for Γ

We demand that at high scale our theory be a purely fermionic theory with the contact
interaction described by the Lagrangian

Li = − 1
4C0(ψ

†σ2ψ
†T)(ψTσ2ψ). (2)

Since we are interested in the appearance of the correlated fermion pairs in a physical ground
state, we need to parametrize our effective action in a way that can describe the qualitative
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change in the physics when this occurs. A natural way to do this is to introduce a boson
field whose vacuum expectation value (VEV) describes this correlated pair [7] and study the
evolution of this effective degrees of freedom. At the start of the RG evolution, the boson
field is not dynamical and is introduced through a Hubbard–Stratonovich transformation of
the four-point interaction. As we integrate more and more of the fermion degrees of freedom
by running k to lower values, we generate dynamical terms in the bosonic effective action.
We note that a somewhat related problem of the evolution of the bosonic condensate in a
relativistic scalar model (without fermions) was considered in [8]. In this paper, we treat a
single species of fermion. The corresponding ansatz for the boson–fermion effective action
can be written as

�[ψ,ψ †, φ, φ†, µ, k] =
∫

d4x

[
φ†(x)

(
Zφ(i∂t + 2µ) +

Zm

2m
∇2

)
φ(x) − U(φ, φ†)

+ ψ †
(

Zψ(i∂t + µ) +
ZM

2M
∇2

)
ψ − g

(
i

2
ψTσ2ψφ† − i

2
ψ †σ2ψ

†Tφ

)]
.

Here M is the mass of the fermions in vacuum and the factor 1/2m in the boson kinetic term
is chosen simply to make Zm dimensionless. The couplings, the chemical potential µ, the
wavefunction renormalizations Zφ,ψ and the kinetic-mass renormalizations Zm,M all run with
k, the scale of the regulator. The bosons are, in principle coupled to the chemical potential via a
quadratic term in φ, but this can be absorbed into the potential by defining Ū = U −2µZφφ†φ.
We expand this potential about its minimum, φ†φ = ρ0, so that the coefficients ui are defined
at ρ = ρ0 as

Ū (ρ) = u0 + u1(ρ − ρ0) + 1
2u2(ρ − ρ0)

2 + 1
6u3(ρ − ρ0)

3 + · · · , (4)

where we have introduced ρ = φ†φ. The phase of the system is determined by the coefficient
u1. In the symmetric phase, we have ρ0 = 0 so that the expansion takes the form

Ū (ρ) = u0 + u1ρ + 1
2u2ρ

2 + · · · . (5)

The potential in the condensed phase can be simplified to

Ū (ρ) = u0 + 1
2u2(ρ − ρ0)

2 + · · · . (6)

In our current work, we shall truncate this potential at quartic order in the field (order ρ2).
However, the fact that we define our coupling constants at the minimum of the potential does
mean that we need to consider the next term in the expansion. This will allow us to treat
the implicit dependence of the coefficients on ρ0. We treat the wavefunction renormalization
factor for the bosons in the same way, expanding it about ρ = ρ0 as

Zφ(ρ) = zφ0 + zφ1(ρ − ρ0) + · · · . (7)

The other couplings and renormalization factors can be treated similarly.
The fermions are not dressed at this point and the bosons are just auxiliary fields and so

we can assume that Zψ(K) = 1, ZM(K) = 1.

We have a choice between following the evolution for fixed chemical potential, and
allowing µ to run so that the fermion density is kept fixed. The region corresponding to
a Bose–Einstein condensate (BEC) of tightly bound pairs corresponds to negative values of
µ and is not accessible to evolution at fixed chemical potential. We therefore follow the
evolution at fixed density, n. In this context, it is convenient to define the Fermi momentum,
pF , corresponding to this density and the chemical potential at the starting scale by

pF = (3π2n)1/3, µ(K) = 1

2M
p2

F . (8)

This connection between µ and pF only holds in the symmetric phase, where µ does not run.



8078 B Krippa

2. Evolution equations: general structure

In this section, we consider the general structure of the evolution equations. We start by
considering the simpler case of evolution at constant chemical potential. The boson potential
Ū is obtained by evaluating the effective action for uniform boson fields. It is given by

∂kŪ = − 1

V4
∂k�, (9)

where V4 is the volume of spacetime. Substituting our expansion of Ū , equation (4), on the
left-hand side leads to a set of ordinary differential equations for un. We choose to evolve
following the minimum of the potential and use the expansion around the minimum ρ = ρ0(k)

to define un, as in equation (6). In the symmetric phase, ρ = 0, it gives the following set of
equations:

dun

dk
= ∂n

∂ρn
(∂kŪ)

∣∣∣∣
ρ=0

. (10)

In the condensed phase, we need to define the total derivative
d

dk
= ∂k +

dρ0

dk

∂

∂ρ0
. (11)

Acting on ∂nŪ/∂ρn with this (and taking the higher derivative term over to the lhs) gives a set
of equations, each of which is coupled to the coefficient of the next term through the evolution
of ρ0:

dun

dk
− un+1

dρ0

dk
= ∂n

∂ρn
(∂kŪ)

∣∣∣∣
ρ=ρ0

. (12)

The coefficient u1 is special since it vanishes for the expansion around the minimum. Imposing
the condition u1(k) = 0 gives an equation for the evolution of ρ0:

−u2
dρ0

dk
= ∂

∂ρ
(∂kŪ)

∣∣∣∣
ρ=ρ0

. (13)

The coefficient u0 provides information on the energy density of matter. It satisfies the equation
du0

dk
= ∂kŪ

∣∣∣∣
ρ=ρ0

, (14)

which does not couple back into the other equations.
In the condensed phase, we could truncate our potential at quadratic order, as we do on

the right-hand sides of these equations, and simply set u3 = 0 on the left-hand side of the
equation for u2. However, a better approximation can be obtained by substituting the exact
form for u3(k) taken from the evolution with fermion loops only, as described below. This
is the approach we adopt here. It has the benefit of providing an approximation to u2(k) and
ρ0(k) that becomes exact in situations where boson loops can be neglected.

For the boson wavefunction renormalization factor, Zφ , we need to consider a time-
dependent background field taken in the form like φ = φ0 + η exp(−ip0t), where η is a
constant. The evolution of Zφ can then be obtained from

∂kZφ = 1

V4

∂

∂p0

(
∂2

∂η∂η† ∂k�

)
η=0

∣∣∣∣
p0=0

. (15)

If we substitute our expansion, equation (7), we get another set of coupled equations in the
condensed phase. Only the first of these is of interest within our current truncation

dzφ0

dk
− zφ1

dρ0

dk
= 1

V4

∂

∂p0

(
∂2

∂η∂η† ∂k�

)
η=0

∣∣∣∣
p0=0,ρ=ρ0

. (16)
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Again, zφ1 corresponds to a term beyond our current level of truncation and so we will take
the result from fermion loops only. Making use of the relation between U and Ū we can also
deduce the evolution of Zφ from

∂kZφ = −1

2

∂2

∂µ∂ρ
(∂kŪ), (17)

which gives

dzφ0

dk
− zφ1

dρ0

dk
= −1

2

∂2

∂µ∂ρ
(∂kŪ)

∣∣∣∣
ρ=ρ0

. (18)

The evolution equations for the other couplings (Zm,ZM,Zψ,Zg) can be derived in a similar
manner. However, in this paper we allow to run only Zφ parameters in the potential and
chemical potential since this is the minimal set needed to include the effective boson dynamics
and study the BCS–BEC crossover.

The fermion number density is given by

n = − ∂Ū

∂µ

∣∣∣∣
ρ=ρ0

. (19)

The evolution equation for n can be written as

dn

dk
− 2zφ0

dρ0

dk
= − ∂

∂µ
(∂kŪ)

∣∣∣∣
ρ=ρ0

. (20)

The equations constructed so far describe the evolution at constant µ. If we want to follow
the evolution at a constant density we must allow µ to run with k. In this case, we define the
total derivative

d

dk
= ∂k +

dρ0

dk

∂

∂ρ0
+

dµ

dk

∂

∂µ
. (21)

Applying this to ∂Ū/∂µ at ρ = ρ0 gives the evolution equation for n:

dn

dk
− 2zφ0

dρ0

dk
+ χ

dµ

dk
= − ∂

∂µ
(∂kŪ)|ρ=ρ0 , (22)

where we have introduced the fermion-number susceptibility

χ = ∂2Ū

∂µ2

∣∣∣∣
ρ=ρ0

. (23)

If n is kept constant (dn/dk = 0) this becomes

−2zφ0
dρ0

dk
+ χ

dµ

dk
= − ∂

∂µ
(∂kŪ)

∣∣∣∣
ρ=ρ0

. (24)

This equation describes the evolution of the chemical potential in the broken phase.
The remaining set of evolution equations to be solved (in the broken phase) is

du0

dk
+ n

dµ

dk
= ∂kŪ

∣∣∣∣
ρ=ρ0

, (25)

−u2
dρ0

dk
+ 2zφ0

dµ

dk
= ∂

∂ρ
(∂kŪ)

∣∣∣∣
ρ=ρ0

, (26)

du2

dk
− u3

dρ0

dk
+ 2zφ1

dµ

dk
= ∂2

∂ρ2
(∂kŪ)

∣∣∣∣
ρ=ρ0

, (27)
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dzφ0

dk
− zφ1

dρ0

dk
+

1

2
χ ′ dµ

dk
= −1

2

∂2

∂µ∂ρ
(∂kŪ)

∣∣∣∣
ρ=ρ0

, (28)

dzm0

dk
− zm1

dρ0

dk
+ αm

dµ

dk
= − 1

V4

∂

∂(p2)

(
∂2

∂η∂η† ∂k�

)
η=0

∣∣∣∣∣
p2=0,ρ=ρ0

, (29)

where we have defined

χ ′ = ∂3Ū

∂µ2∂ρ

∣∣∣∣
ρ=ρ0

, αm = 1

V4

∂2

∂µ∂(p2)

(
∂2

∂η∂η† ∂k�

)
η=0

∣∣∣∣∣
p2=0,ρ=ρ0

. (30)

The set of evolution equations in the symmetric phase can easily be recovered using the fact
that chemical potential does not run in the symmetric phase and that ρ0 = 0. The left-hand
sides of these equations contain a number of coefficients that lie beyond our current level of
truncation, such as χ , u3 and zφ1. We propose to replace these by their exact expressions
obtained from evolution with fermion loops only. The formal derivation of the corresponding
expressions will be considered in more detail below.

3. Choice of cutoff

In the bosonic sector, we take the regulator to be an additional quadratic term, proportional to
φ†(x)φ(x ′). In the representation used to write the second derivatives above, it has the matrix
structure

RB(q, k) =
(

RB(q, k) 0
0 RB(q, k)

)
, RB(q, k) = k2

2m
f (q/k), (31)

where f (x) → 1 as x → 0.
In the fermion case, our regulator should be positive for particle states (ZMq2/2M >

Zψµ) and negative for hole states (ZMq2/2M < Zψµ). It should suppress the contributions
of states with energies near µ. One easy way to ensure this would be to use the off-diagonal
regulator and so generates an artificial gap in the fermion spectrum around µ. However, such
a regulator could not be used without a Fermi sea and so would not allow us to connect our
results in matter to the interaction between the fermions in vacuum. We therefore choose our
regulator to have the structure

RF (q, pF , k) =
(

sgn(q − pµ)RF (q, pF , k) 0

0 −sgn(q − pµ)RF (q, pF , k)

)
, (32)

where we have introduced

pµ =
√

Zψ2Mµ

ZM

, (33)

the Fermi momentum corresponding to the (running) value of µ.
The function RF (q, pF , k) should suppress the contributions of states with momenta near

the Fermi surface, |q −pF | � k. Once a large gap has appeared in the fermion spectrum, there
are no low-energy fermion excitations and so the fermionic regulator plays little further role.
However, while the gap is zero or small, it is crucial that the sign of the regulator matches that
of the energy, ZMq2/2M − Zψµ, and hence it is µ which appears in the sign functions.

In order to be sure that we are matching onto the same bare NN interaction at the starting
scale K, the fermionic regulator should satisfy RF (q, pF ,K) � RF (q, 0,K).
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4. Driving terms: potential

In this section, we derive the evolution equations for the parameters of the potential.
Calculating the fermion propagator, multiplying by ∂kRF and taking the matrix trace give

1

2
tr
[
(∂kRF )

(
Γ(2)

FF − RF

)−1] = 2EFR(q, pF , k) sgn(q − pµ)∂kRF (q, pF , k)

Z2
ψq2

0 − EFR(q, pF , k)2 − �2 + iε
, (34)

where

EFR(q, pF , k) = ZM

2M
q2 − Zψµ + RF (q, pF , k) sgn(q − pµ), �2 = g2φ†φ. (35)

The poles in this propagator occur at

q0 = ± 1

Zψ

√
EFR(q, pF , k)2 + �2. (36)

At k = 0 (RF = 0) in the condensed phase, these become

q0 = ± 1

Zψ

√(
ZM

2M

(
q2 − p2

F

))2

+ �2, (37)

and so the gap in the fermion spectrum at q = pF is 2�/Zψ .
The corresponding boson matrix trace can be worked out in a similar way. Putting

everything together gives

∂kŪ = − 1

V4
∂k� = − 1

Zψ

∫
d3q

(2π)3

EFR√
E2

FR + �2
sgn(q − pµ)∂kRF

+
1

2Zφ

∫
d3q

(2π)3

EBR√
E2

BR − V 2
B

∂kRB, (38)

where

EBR(q, k) = Zm

2m
q2 + u1 + u2(2φ†φ − ρ0) + RB(q, k), VB = u2φ

†φ. (39)

The driving terms in the evolution equations for the coefficients in our expansion, equation (4),
are obtained from the derivatives of ∂kŪ with respect to ρ = φ†φ so that we get in the condensed
phase

∂

∂ρ
(∂kŪ)|ρ=ρ0 = g2

2Zψ

∫
d3q

(2π)3

EFR(
E2

FR + �(c)2
)3/2 sgn(q − pµ)∂kRF

+
u2V

(c)
B

2Zφ

∫
d3q

(2π)3

E
(c)
BR − 2V

(c)
B(

E
(c)2
BR − V

(c)2
B

)3/2 ∂kRB, (40)

where

E
(c)
BR(q) = Zm

2m
q2 + u2ρ0 + RB(q, k), V

(c)
B = u2ρ0, �(c) = g

√
ρ0, (41)

and similarly for the second derivative of ∂kŪ with respect to ρ = φ†φ. The equations for
the couplings u1(2) in both phases can be obtained in a similar way from the driving terms
recalling that in the symmetric phase ρ = ρ0, u1 �= 0. The driving term for the evolution
of the fermion number density is given by the derivative of Ū with respect to µ. The sign
functions in the fermion part of equation (38) depend on µ and so, in principle, differentiating
with respect to µ could generate surface terms. However, the sign change occurs at precisely
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the point where EFR vanishes and hence such terms do not arise. The resulting driving term
vanishes in the symmetric phase, and so evolution at constants n and µ is the same there.

For the evolution of µ in the condensed phase, we get

− ∂

∂µ
(∂kŪ)

∣∣∣∣
ρ=ρ0

= −
∫

d3q

(2π)3

�(c)2(
E2

FR + �(c)2
)3/2 sgn(q − pµ)∂kRF

−
∫

d3q

(2π)3

V
(c)2
B(

E
(c)2
BR − V

(c)2
B

)3/2 ∂kRB. (42)

5. Driving terms: Zφ

For the wavefunction renormalization factor, Zφ , we need to consider a time-dependent
background field. The evolution of Zφ is then driven by

1

V4

∂

∂p0

(
∂2

∂η∂η† ∂k�

)
η=0

∣∣∣∣∣
p0=0

. (43)

Defining

Γ(3)
BBφ = ∂

∂φ
Γ(2)

BB =
(−2u2φ

† −2u2φ

0 −2u2φ
†

)
, (44)

and

Γ(3)
FFφ = ∂

∂φ
Γ(2)

FF =
(

0 igσ2

0 0

)
, (45)

we can write the relevant part of the evolution equation in the form

∂2

∂η∂η† ∂k�

∣∣∣∣
η=0

= +i Tr
[
(∂kRF )

(
Γ(2)

FF − RF

)−1
Γ(3)†

FFφ

(
Γ(2)

FF − RF

)−1
Γ(3)

FFφ

(
Γ(2)

FF − RF

)−1]
− i Tr

[
(∂kRB)

(
Γ(2)

BB − RB

)−1
Γ(3)†

BBφ

(
Γ(2)

BB − RB

)−1
Γ(3)

BBφ

(
Γ(2)

BB − RB

)−1]
.

(46)

After lengthy algebra, one can obtain in broken phase

1

V4

∂

∂p0

(
∂2

∂η∂η† ∂k�

)
η=0

∣∣∣∣∣
p0=0

= −g2

4

∫
d3q

(2π)3

2E2
FR − �(c)2(

E2
FR + �(c)2

)5/2
sgn(q − pµ)∂kRF

− u2V
(c)
B

2

∫
d3q

(2π)3

2E
(c)2
BR − 6E

(c)
BRV

(c)
B + V

(c)2
B(

E
(c)2
BR − V

(c)2
B

)5/2
∂kRB. (47)

The corresponding expression in the symmetric phase follows rather trivially.
As a check on this result, we note that u1 contains a piece −2µZφ . Hence, we can also

obtain the evolution of Zφ from

−1

2

∂2

∂µ∂ρ
(∂kŪ)

∣∣∣∣
ρ=ρ0

. (48)

Taking the partial derivative with respect to µ, as discussed at the end of the previous section,
the result we obtain agrees with equation (47).
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6. Fermions only

In order to estimate the effects of the higher order coefficients (u3, etc), we use the ERG
equations when boson loops are neglected. In this case, the expressions simplify considerably
and the total effective potential can be calculated analytically. All the needed coefficients
can then be extracted by simple differentiation. The RG equation for the effective potential
becomes

∂kŪ = −
∫

d3q

(2π)3

EFR√
E2

FR + �2
sgn(q − pµ)∂kRF . (49)

(In the absence of boson fluctuations, we have Zψ = 1.) This can be rewritten in the form

∂kŪ = −∂k

∫
d3q

(2π)3

√
E2

FR + �2, (50)

and immediately integrated to give

Ū (ρ, µ, k) = Ū (ρ, µ,K)−
∫

d3q

(2π)3

[√
EFR(q, pF , k)2 + �2 −

√
EFR(q, pF ,K)2 + �2

]
.

(51)

We have made explicit the dependence of the potential on the chemical potential µ.
At our starting scale K, we take the potential to have the form

Ū (ρ, µ,K) = u0(K) + u1(K)ρ. (52)

The renormalized value of u1(K) can be deduced from the scattering length. To determine
u0(K), we use the fact that at ρ = 0 the physical potential is just that of a free Fermi gas,
measured relative to the chemical potential

Ū (0, µ, 0) = 2
∫

d3q

(2π)3
EFR(q, pF , 0)θ(pF − q), (53)

and hence

u0(K) =
∫

d3q

(2π)3
EFR(q, pF , 0) −

∫
d3q

(2π)3
EFR(q, pF ,K)sgn(q − pF ). (54)

The physical potential (at k = 0) is then given by

Ū (ρ, µ, 0) =
∫

d3q

(2π)3
[EFR(q, pF , 0) −

√
EFR(q, pF , 0)2 + �2]

− M�2

4πa
+

�2

2

∫
d3q

(2π)3

1

EFR(q, 0, 0)
. (55)

Differentiating with respect to ρ and setting the derivative equal to zero, we find that �2

at the minimum satisfies

− M

4πa
+

1

2

∫
d3q

(2π)3

[
1

EFR(q, 0, 0)
− 1√

EFR(q, pF , 0)2 + �2

]
= 0. (56)

This is exactly the gap equation used in [9].
To get the number density of fermions, we can differentiate Ū (ρ, µ, 0) with respect to µ.

This gives

n =
∫

d3q

(2π)3

[
1 − EFR(q, pF , 0)√

EFR(q, pF , 0)2 + �2

]
, (57)

in agreement with [9].



8084 B Krippa

7. Initial conditions

We start our evolution at some large, fixed value for the cutoff scale, K, and evolve down to
k = 0. This clearly requires some initial conditions on the parameters in our effective action.
Some constraints on these have already been mentioned in section 1, but we now turn to fixing
specific values for them. These should be derived from the known interactions between the
particles in vacuum. In the vacuum case, it is relatively straightforward to fix the initial values
for the parameters at the starting scale K.

In matter, the determination of our renormalized parameters is complicated by the fact
that our fermionic cutoff depends on the Fermi momentum. The values of parameters such
as u1(pF ,K) must thus depend on pF as well as on K. Note that we assume that our starting
scale K is sufficiently large that all physical effects of the Fermi sea have been completely
suppressed by our cutoff. Hence, the dependence of the initial parameters on pF is merely to
compensate for the pF dependence of our regularization and renormalization procedures. For
example, in the case of a simple sharp cutoff, the maximum momentum included is K + pF

in matter instead of K. It is thus particularly important to correctly renormalize u1(pF ,K),
since this quantity cancels a linear divergence and so can be shifted by a finite amount even
for K → ∞.

One could introduce a cutoff function that tends to a pF -independent form for K � pF .
However in practice a modification of the renormalization procedure is more convenient.
In the region K � pF , we can ignore boson loops. The evolution of quantities such as
u1(pF ,K), u2(pF ,K), Zφ(pF ,K) and Zm(pF ,K) is thus similar to the vacuum case, except
for the different cutoffs. This allow us to define u1(pF ,K) as

u1(pF ,K)

g2
= − M

4πa
+

1

2

∫
d3q

(2π)3

[
1

EFR(q, 0, 0)
− sgn(q − pF )

EFR(q, pF ,K)

]
. (58)

This expression can be thought of as being generated by the vacuum evolution using a
modified cutoff that interpolates smoothly between RF (q, pF , k) for k � pF and RF (q, 0, k)

for k � pF . It ensures that our renormalized parameter u1(pF ,K), defined using RF (q, pF , k)

for large k, corresponds to the physical scattering length in vacuum.
The initial values for u2(pF ,K), Zφ(pF ,K) and Zm(pF ,K) can be determined using

similar procedures, although this is not so crucial since these quantities do not contain linearly
divergent pieces and so all their pF -dependence is suppressed by the powers of pF /K . One
convenient choice is to take their starting values to be zero at some large but finite scale K. An
alternative is to require that they tend to zero as K → ∞.

The initial condition for the energy density is most conveniently expressed in terms of ũ0

which, in the symmetric phase, is simply given by the energy of a free Fermi gas, measured
relative to the chemical potential, and so its initial value is just

ũ0(K) = 2
∫

d3q

(2π)3
EFR(q, pF , 0)θ(pF − q). (59)

8. Results and conclusion

We solve the evolution equations (equations (24) and (26)–(28)) numerically with two types
of cutoffs. First, we use the smoothed step-function type of regulator (called hereafter as R1):

R1F = k2

2M
θ1(q − pF , k, σ ), R1B = k2

2m
θ1(q, k, σ ), (60)
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Figure 1. Numerical solutions to the evolution equations for infinite a0 and pF = 1.37 fm−1,
starting from K = 16 fm−1. We show the evolution of all relevant parameters for the cases of
fermion loops only (thin lines), and of bosonic loops with a running Zφ (thick lines). All quantities
are expressed in the appropriate powers of fm−1.

where

θ1(q, k, σ ) = 1

2Erf(1/σ)

[
Erf

(
q + k

kσ

)
+ Erf

(
q − k

kσ

)]
(61)

with σ being a parameter determining the sharpness of the step.
Second, we use a sharp cutoff function denoted as R2 chosen to make the calculations as

simple as possible:

R2F = 1

2M

[
((k + pµ)2 − q2)θ(pµ + k − q) +

(
(k + pµ)2 + q2 − 2p2

µ

)
θ(q − pµ + k)

]
, (62)

R2B = 1

2m
(k2 − q2)θ(k − q). (63)

Similar boson regulator was used in [10] (see also [11]).
As we can see the fermion sharp cutoff consists of two terms which result in the

modification of the particle and hole propagators respectively. The hole term is further
modified to suppress the contribution from the surface terms, which may bring in the dangerous
dependence of the regulator on the cutoff scale even at the vanishingly small k. As an example,
we focus on the parameters relevant to neutron matter: M = 4.76 fm−1, pF = 1.37 fm−1.

We first discuss the results obtained with the smooth cutoff R1. We find that the value
of the physical gap is practically independent of either the values of the width parameter σ

(varied within some range) or the starting scale K provided K > 5 fm−1. The results of the
calculations are shown in figure 1. At the starting scale, the system is in the symmetric phase
and remains in this phase until u1 hits zero at kcrit � 1.2 fm−1, where the artificial second-order
phase transition to a broken phase occurs and the energy gap is formed. Already at k � 0.5
the running scale has essentially no effect on the gap. We found very small (in the level of
1%) contribution to the gap from the boson loops, due to cancellations between the direct
contributions to the running of the gap and indirect ones via u2. The boson loops play much
more important role in the evolution of u2 and Zφ . In fact, they drive both couplings to zero at
k → 0 although at rather slow pace. We note, however, that the effect of the boson loops for
the gap may still be more visible if the evolution of the other couplings is included. The results
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Figure 2. Evolution of the chemical potential.

obtained for the gap correspond to the case of the infinite negative scattering length. To study
the BCS–BEC crossover, we have to solve the evolution equation for a wider range of the
scattering lengths, including the positive values. The corresponding results for the evolution
of the chemical potential as a function of the parameter pF a are shown in figure 2. While
the vacuum scattering length is large and negative, the system is in the BCS-like phase with
positive chemical potential, whereas if the scattering length is chosen to be large and positive
reflecting the existence of a bound state near threshold the system ends up being the collection
of weakly overlapping tightly bound pairs with negative chemical potential.

Now we turn to the results obtained with sharp cutoff (figure 3). One immediate
observation is that the results become starting scale independent as long as K > 5 fm−1

similar to the smooth regulator case. However, the phase transition occurs at lower values
of the running scale k � 0.7 fm−1. At approximately k � 0.2 fm−1, the value of the gap
becomes scale independent. It is worth mentioning that a sharp regulator can generate
singularities in the evolution of the wavefunction renormalization parameters. However,
unlike all the other wavefunction renormalization constants, the evolution of the boson
wavefunction renormalization factor Zφ can be obtained directly from the evolution of the
effective potential (see equation (48)) for which a sharp regulator provides the smooth evolution
without singularities. We expect some singularities to appear when calculating the fermion
renormalization factors Zψ and ZM . The gap evolutions obtained with the smooth and sharp
regulators, being rather different at intermediate scales, approach each other with decreasing
scale resulting in similar values for the physical gap. This is an encouraging result taking into
account that, although the exact results must be independent of the choice of the regulator,
in practice it is not guaranteed. The same conclusion also holds for other quantities. The
couplings Zφ and u2 first grow with scale and then start decreasing eventually coming to
zero. Chemical potential begins to decrease at the point of phase transition and becomes scale
independent at k � 0.2 fm−1. However, in this case the numerical values of the chemical
potentials obtained with different regulators differ by approximately 20% so that this quantity
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Figure 3. Evolution of the parameters when the sharp cutoff is used.

is more sensitive to the details of effective action and to the truncations made. We note that
the sharp regulator can also describe the BCS–BEC crossover, although it gives somewhat
smaller (negative) values of chemical potential at pF a > 1. Applying our approach to neutron
matter we find a gap comparable to εF , of the order of 30 MeV. There is a simple explanation
for the smaller values (see [12, 13] or [14]). The argument can be given most succinctly for
weak coupling, where the gap satisfies

� = (8/e2)εF exp(−(π/2) cot(δ(pF ))). (64)

For nucleon–nucleon scattering, cot δ increases relatively quickly with momentum and the
resulting reduction in the gap is substantial. We therefore expect that an extension of our
approach to include the effective range should capture this physics. Indeed, if the ‘in-medium’
scattering length is identified with the Bethe–Goldstone G matrix calculated at zero energy
but finite momenta [15] then we obtain the gap � 8 MeV which is already compatible with the
commonly accepted value. Of course, this is only a crude estimate and the proper calculations
should be done using the momentum-dependent part of the four-fermion interaction.

In summary, the RG analysis for a many-fermion system with attraction leading to pairing
effect has been carried out. It was found that, while at high scale the theory is in the symmetric
phase, lowering the cutoff scale results in an appearance of a condensate and transition to a
broken phase. Two different forms of the regulators were shown to lead to qualitatively similar
results at the physical point. There are several points where our approach could be improved.
We have already mentioned above the effective range effects. We should also include running
of all the couplings and treat explicitly the particle–hole channels (RPA phonons) since these
contain important physics. We would like to include the three-body force effects, which are
required to satisfy the reparametrization invariance theorem [16] and possibly the long-range
forces. As to further applications we plan to explore the superfluidity of the cold fermionic
atoms in traps, temperature dependence of the BEC–BSC transitions and the formal relations
the ERG with the other many-body approaches.
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